banner



Find Dy/du Du/dx And Dy/dx

The Chain Dominion

The Chain Rule

Our goal is to differentiate functions such as

y = (3x + ane)10

The Chain Dominion

If
  y = y(u)

is a function of

u , and u = u(x)

is a part of

ten then

          dy           dy        du
   =
dx            du       dx

In our example nosotros have

        y  =  u 10

and

   u  =  3x + 1

so that

        dy/dx  =  (dy/du)(du/dx)

      =  (10u9) (3)  =  30u9  =  30 (3x+one)9


Proof of the Chain Rule

Call up an alternate definition of the derivative:



Examples

Find f '(ten) if

  1. f(ten) = (10iii - ten + 1)20

  2. f(10) = (x4 - 3x3 + ten)5

  3. f(ten) = (one - x)9 (1-ten2)four

  4.                (103 + 4x - three)7
    f(x)  =
    (2x - 1)iii

Solution:

  1. Here

      f(u) = u20

    and

    u(x) = xiii - 10 + 1

    So that the derivative is

       [20u19] [3x2 - 1]  =  [20(x3 - ten + ane)19] [3x2 - 1]

  2. Here

          f(u) = u5

    and

          u(ten) = xfour - 3xiii + ten

    So that the derivative is

            [5u4] [4x3 - 9xii + one]  =  [5(x4 - 3xiii + ten)4] [4x3 - 9xtwo + i]

  3. Here we need both the product and the chain dominion.

          f'(x) = [(1 - ten)9] [(1 - x2)four]' + [(1 - x)9] '  [(1 - xtwo)4]

    We first compute

        [(ane - x2)iv] ' = [four(1 - x2)3] [-2x]

    and

            [(one - x)9] '  = [9(1 - x)viii] [-1]

    Putting this all together gives

           f'(10) = [(1 - x)ix] [4(i - x2)3] [-2x]  -  [9(1 - x)8]  [(i - x2)4]

  4. Here we demand both the quotient and the chain rule.

    (2x - one)3 [(x3 + 4x - 3)7] '  -  (x3 + 4x - iii)7 [(2x - 1)three] '
    f '(x) =
    (2x - 1)6

    We showtime compute

            [(x3 + 4x - 3)7] ' = [seven(tenthree + 4x - 3)vi] [3x2 + 4]

    and

       [(2x - 1)3] '  = [3(2x - 1)2] [2]

    Putting this all together gives

                         7(2x - 1)three (x3 + 4x - three)6 (3x2 + 4)  +  half dozen(tenthree + 4x - 3)vii (2x - 1)2
    f '(x) =
    (2x - 1)6

    Exercise

    Find the derivative of

    102(five - tenthree)iv
    f(x)  =
    3 - x


Application

Suppose that yous put $m into a banking company at an involvement charge per unit r compounded monthly for 3 years.  So the corporeality A that will exist in the business relationship at the end of the iii years will be

A = yard(1 + r/12)36

Discover the charge per unit at which A rises with respect to a ascension in the interest rate when the interest rate is six%.

Solution

Nosotros are asked to find a derivative.  We use the chain rule with

        u  =  1 + r/12     and       A(u)  =  1000u36

The 2 derivatives are

       u'  =  i/12      and     A'  =  36000u35

The chain rule gives

        dA/dr  =  dA/du du/dr  =  (ane/12) 36000 u35

        =  3000 u35  =  3000(1 + r/12)35

Now plug in r   =   6%  =  0.06  to get

        3000(1 + 0.06/12)35  =  3572.18


Back to the calculus home folio

Back to the math department home page

e-mail Questions and Suggestions

Find Dy/du Du/dx And Dy/dx,

Source: https://ltcconline.net/greenl/courses/115/differentiation/chain.htm

Posted by: waxwitte1979.blogspot.com

0 Response to "Find Dy/du Du/dx And Dy/dx"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel